top of page

PUBLICATIONS

2024

  1. Oladosu VI, S. Park, and K. Sauer. 2024. Flip the switch: the role of FleQ in modulating the transition between the free-living and sessile mode of growth in Pseudomonas aeruginosa. Journal of Bacteriology 0:e00365-23. https://doi.org/10.1128/jb.00365-23. Editor's pick

​

2023

  1. Kalia, M., D. Amari, D.G. Davies, and K. Sauer. 2023. cis-DA-dependent dispersion by Pseudomonas aeruginosa biofilm and identification of cis-DA-sensory protein DspS. mBio 0:e02570-02523.

  2. Park, S., J. Dingemans, and K. Sauer. 2023. Manganese acts as an environmental inhibitor of the Pseudomonas aeruginosa biofilm development by inducing dispersion, modulating c-di-GMP and exopolysaccharide production via RbdA. Journal of Bacteriology. Special Series: 2022 ASM Conference on Biofilms. Doi: https://doi.org/10.1128/jb.00003-23.

  3. Kaleta, M., and K. Sauer. 2023. MoaB1 homologs contribute to biofilm formation and motility by Pseudomonas aeruginosa and Escherichia coliJournal of Bacteriology. Special Series: 2022 ASM Conference on Biofilms. Doi: https://doi.org/10.1128/jb.00004

  4. US 11,541,105 patent (Compositions and Methods for Disrupting Biofilm Formation and Maintenance). Sauer, K, et al., 2023.

  5. Greenwich J.L., D. Fleming, E. Banin, S. Häussler, B.V. Kjellerup, K. Sauer, K.L. Visick, and C. Fuqua. The biofilm community resurfaces: new findings and post-pandemic progress. Journal of Bacteriology 0:e00166-00123.

​

2022

  1. Kaleta, M.F., O.E. Petrova, C. Zampaloni, F. Garcia-Alcalde, M. Parker, and K. Sauer. 2022. A previously uncharacterized gene, PA2146, contributes to biofilm formation and drug tolerance across the ɣ-Proteobacteria. npj Biofilms and Microbiomes 8:54. https://doi.org/10.1038/s41522-022-00314-y

  2. Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS, Bjarnsholt T. 2022. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature Reviews Microbiology.

  3. Redman, W., D. Fleming, K. Sauer, and K. Rumbaugh. 2022. Clinical Translation of Biofilm Dispersal Agents, p. 127-157. In Richter K, Kragh KN (Ed.), Antibiofilm Strategies: Current and Future Applications to Prevent, Control and Eradicate Biofilms. Springer International Publishing, Cham.

  4. Park, S., and K. Sauer. 2022. Controlling biofilm development through cyclic di-GMP signaling, pp. 69-94. In A. Filloux and J-L. Ramos (Ed.), Pseudomonas aeruginosa: biology, pathogenesis and control strategies. Springer International Publishing, Cham.

  5. Kalia, M., M.D. Resch, K.E. Cherny, and Sauer K. 2022. The alginate and motility regulator AmrZ is essential for the regulation of the dispersion response by Pseudomonas aeruginosa biofilms. mSphere:e00505-00522.

​

2021

  1. Park, S., J. Dingemans, M. Gowett, and K. Sauer. 2021. Glucose-6-phosphate acts as an extracellular signal of SagS to modulate Pseudomonas aeruginosa c-di-GMP levels, attachment and biofilm formation. mSphere 6:e01231-01220

  2. Park, S., and K. Sauer. SagS and its unorthodox contributions to Pseudomonas aeruginosa biofilm development. Biofilm, 3, 100059.

 

2020

  1. Rumbaugh, K. P. & K. Sauer. 2020. Biofilm dispersion. Nature Reviews Microbiology, doi:10.1038/s41579-020-0385-0 (2020).

  2. Xiao, X., Zhao, W., Liang, J., Sauer, K. & Libera, M. 2020. Self-defensive antimicrobial biomaterial surfaces. Colloids and Surfaces B: Biointerfaces 192, 110989, doi:https://doi.org/10.1016/j.colsurfb.2020.110989 (2020).

  3. Cherny, K. E., and K. Sauer. 2020. Untethering and degradation of the polysaccharide matrix are essential steps in the dispersion response of Pseudomonas aeruginosa biofilms. Journal of Bacteriology 202:e00575-00519.

  4. Sauer K. 2020. Cyclic di-GMP and the regulation of biofilm dispersion, p. 545-560. In Chou S-H, Guiliani N, Lee VT, Römling U (ed.), Microbial Cyclic Di-Nucleotide Signaling. Springer International Publishing, Cham.

 

2019

  1. Sauer, K. 2019. The war on slime: Why biofilms have earned their bad reputation and how scientists plan to retaliate. Scientific American 28 (July issue 3s): 70-75.

  2. Han, C., J. Goodwine, N. Romero, K. Sauer, and A. Doiron. 2019. Enzyme-encapsulating polymeric nanoparticles: a potential adjunctive therapy in Pseudomonas aeruginosa biofilm-associated infection treatments. Colloids and Surfaces B: Biointerfaces. 184:110512.

  3. Article was featured on journal cover

  4. *Tao. T., I.-T. Bae, K.B. Woodruff, K. Sauer, and J. Cho. 2019. Hydrothermally-Grown Nanostructured Anatase TiO2 Coatings Tailored for Photocatalytic and Antibacterial Properties
    Ceramics International.45: 23216-23224.

    1. authors include undergraduate students

  5. Dingemans, J., Al-Feghali, R. E., H. Sondermann, and K. Sauer. 2019. Signal sensing and transduction is conserved between the periplasmic sensory HmsP domains of BifA and SagS. mSphere 4, e00442-19..

  6. Cherny, K. E. and K. Sauer. 2019. Pseudomonas aeruginosa requires the DNA-specific endonuclease EndA to degrade eDNA to disperse from the biofilm. Journal of Bacteriology, JB.00059-19.

  7. Goodwine, J., J. Gil, A. Doiron , J. Valdes, M. Solis, A. Higa, S. Davis, and K. Sauer. 2019. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. . Scientific Reports 9:3763..

    1. https://www.sciencedaily.com/releases/2019/04/190423133747.htm

    2. Top 100 most downloaded microbiology papers published in 2019, https://www.nature.com/collections/ijehfgdfgi?amp&&

  8. *Dingemans, J., Al-Feghali, R. E., Lau, G. W. and K. Sauer. 2019. Controlling chronic Pseudomonas aeruginosa infections by strategically interfering with the sensory function of SagS. Molecular Microbiology 11: 1211-1228.

    1. authors include undergraduate students

 

YouTube video  

Implant Infection: A Complex Healthcare Challenge

This video is meant to raise awareness about the growing problem of infection associated with biomedical implants and some of the many challenges facing the field. The video was produced in conjunction with the 5th Stevens Conference.

 

 

2018

  1. Poudyal, B. and K. Sauer. 2018. PA3177 encodes an active diguanylate cyclase that contributes to the biofilm antimicrobial tolerance but not biofilm formation by P. aeruginosa. Agents and Chemotherapy. AAC.01049-18. doi: 10.1128/AAC.01049-18.

  2. Dingemans J, B. Poudyal, H. Sondermann, and K. Sauer. 2018. The Yin and Yang of SagS: Distinct Residues in the HmsP Domain of SagS Independently Regulate Biofilm Formation and Biofilm Drug Tolerance. mSphere 3, 00192-18.

  3. Song, F., H. Wang, K. Sauer, and D. Ren. 2018. Cyclic-di-GMP and oprF are involved in the response of Pseudomonas aeruginosa to substrate material stiffness during attachment on polydimethylsiloxane (PDMS). Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.00110.

  4. Poudyal, B. and K. Sauer. 2018. The ABC of biofilm drug tolerance: The MerR-like regulator BrlR is an activator of ABC transport systems, with PA1874-77 contributing to the tolerance by Pseudomonas aeruginosa biofilms to tobramycin. Antimicrobial Agents and Chemotherapy 62: e01981-17.

 

 

2017

  1. Chambers, J.R., K.C. Cherny, and K. Sauer. 2017. Susceptibility of Pseudomonas aeruginosa dispersed cells to antimicrobial agents is dependent on the dispersion cue and class of antimicrobial agent used. Antimicrobial Agents and Chemotherapy, 61:  e00846-17.

  2. Chambers, J.R., and K. Sauer. 2017. Detection of Cyclic di-GMP Binding Proteins Utilizing a Biotinylated Cyclic di-GMP Pull-Down Assay. In c-di-GMP Signaling (pp. 317-329). Humana Press, New York, NY.

  3. Chambers, J.R., and K. Sauer. 2017. Detection of c-di-GMP-Responsive DNA Binding. In c-di-GMP Signaling (pp. 293-302). Humana Press, New York, NY.

  4. Sauer K. (editor). 2017. C-di-GMP Signaling.: Methods and Protocols. Vol 1657. Humana Press, New York, NY

  5. Sauer, K. 2017. The war on slime: Why biofilms have earned their bad reputation and how scientists plan to retaliate. Scientific American, November, 65-60.

  6. Petrova, O.E., and K. Sauer. 2017. High-Performance Liquid Chromatography (HPLC)-Based Detection and Quantitation of Cellular c-di-GMP. In c-di-GMP Signaling (pp. 33-43). Humana Press, New York, NY.

  7. Song, F., M. Brasch, H. Wang, J. Henderson, K. Sauer, and D. Ren. 2017. How bacteria respond to material stiffness during attachment: a role of Escherichia coli flagellar motility. ACS Appl Mater Interfaces 9:22176-22184 .

  8. Petrova, O.E., K. Gupta, J. Liao, J. Goodwine, and K. Sauer. 2017. Divide and conquer: The Pseudomonas aeruginosa two-component hybrid SagS enables biofilm formation and recalcitrance of biofilm cells to antimicrobial agents via distinct regulatory circuits. Environmental Microbiology 19:2005-2024.

  9. *Petrova, O.E., F. Garcia-Alcalde, C. Zampaloni, and K. Sauer. 2017. Comparative evaluation of rRNA depletion procedures 1 for the improved analysis of bacterial biofilm and mixed pathogen culture transcriptomes. Scientific Reports 7:41114 | DOI: 10.1038/srep41114. http://rdcu.be/oKR4.

    1. article was in the Top 100 Scientific Reports Microbiology papers in 2017.

 

2014-2016

  1. Petrova, O. E., and K. Sauer. 2016. Escaping the biofilm in more than one way: Desorption, detachment or dispersion. Current Opinion in Microbiology. 30:67–78.

    1. This article was featured on the cover of the magazine.

  2. Marques, C.N.H., D.G. Davies, and K. Sauer. 2015. Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals 8: 816-835.

  3. Petrova, O.E., K.E. Cherny, and K. Sauer. 2015. The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA. J. Bacteriol. 197:174-187

  4. **Basu Roy, Ankita, and K. Sauer. 2014. Diguanylate cyclase NicD based signaling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Mol Microbiol. 94:771-793.

    1. **This publication was featured in a “MicroCommentary” by Wood, T. K. 2014. Biofilm dispersal: deciding when it is better to travel. Molecular Microbiology 94:747-750.

  5. Petrova, O.E., K.E. Cherny, and K. Sauer. 2014. The P. aeruginosa diguanylate cyclase GcbA, a homolog of the P. fluorescens GcbA, promotes initial attachment to surfaces, but not biofilm formation, via regulation of motility. J. Bacteriol. 196: 2827-2841.

  6. **Lantern, B., K. Sauer, D.G. Davies. 2014. Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. mBio 5: 01206-01214.

    1. **This publication received a faculty 1000 citation as a "being of special significance in its field"

    2. **This publication was featured in a “Letter to the Editor” by Ravnskov and McCully, 2014. Biofilms, lipoprotein aggregates, homocysteing, and arterial plaque rupture, mBio 5: 01717-14.

  7. Li, Y., O.E. Petrova, S. Su, G.W. Lau, W. Panmanee, R. Na, D.G. Davies, D.J. Hassett, and K. Sauer. 2014. BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa. Plos Pathogens 10: e1004168.

  8. Gupta, K., J. Liao, O. E. Petrova, K. E. Cherny, and K. Sauer. 2014. Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa. Mol. Microbiol. 92:488-506.

  9. Chambers, J. R., J. Liao, M. J. Schurr, and K. Sauer. 2014. BrlR from Pseudomonas aeruginosa is a c-di-GMP-responsive transcription factor. Mol. Microbiol. 92:471-487.

 

2013

  1. Gupta, K., C.N.H. Marques, O.E. Petrova, and K. Sauer. 2013. Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid SagS. Journal of Bacteriology: 195: 4975-4987.

  2. Chambers, J.R., and K. Sauer. 2013. The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ. Journal of Bacteriology 195: 4678-468.

  3. Basu Roy, A., O.E. Petrova, and K. Sauer. 2013. Extraction and Quantification of Cyclic Di-GMP from P. aeruginosa. www.Bio-protocol.org.

  4. Liao, J., M.J. Schurr, and K. Sauer. 2013. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug-efflux pumps in Pseudomonas aeruginosa biofilms. J. Bacteriol.:195 3352-3363.

  5. Li, Y., S. Heine, M. Entian, K. Sauer, and N. Frankenberg-Dinkel. 2013. NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by a MHYT-domain coupled phosphodiesterase.  J. Bacteriol. 195: 3531-3542.

 

2001 to 2012

  1. Chamber, J., and K. Sauer. 2012. Small RNAs and their role in biofilm formation. Trends in Microbiology 21: 39-49.

  2. Petrova, O. E., and K. Sauer. 2012. Sticky situations: key components that control bacterial surface attachment. J. Bacteriol. 194:2413-2425.

  3. Hassett, D.J., T.R. Korfhagen, R.T. Irvin, M.J. Schurr, K. Sauer, G.W. Lau, M.D. Sutton, H. Yu, N. Hoiby. 2010. Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin. Ther. Targets 14:117-130.

  4. Sauer, K., A.H. Rickard, and D.G. Davies. 2007. Biofilms and biocomplexity. ASM Microbe 2 (7): 347-353.

  5. Adriana Compagnoni, A., M. Dezani-Ciancaglini, P. Giannini, K. Sauer, V. Sharma, and A. Troina. 2012. Parallel BioScape: A Stochastic and Parallel Language for Mobile and Spatial Interactions. In B. Aman and G. Ciobanu, editors, Proceedings of The 6th Workshop on Membrane Computing and Biologically Inspired Process Calculi. Electronic Proceedings in Theoretical Computer Science. (EPTCS) 100: 101-106.

  6. **Petrova, O. E., and K. Sauer. 2012. Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA. Proc. National Acad. Sci.: 109:16690-16695.  

    1. **This publication received a faculty 1000 citation as a "being of special significance in its field"

  7. Petrova, O. E., and K. Sauer. 2012. PAS domain residues and prosthetic group involved in BdlA-dependent dispersion response by Pseudomonas aeruginosa biofilms. J. Bacteriol., 194:5817-5828.

  8. Petrova, O. E., J. R. Schurr, M. J. Schurr, and K. Sauer. 2012. Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation. Mol. Microbiol. 86: 819–835.

  9. **Liao, J., and K. Sauer. 2012. The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J. Bacteriol.: 194:4823-36. 

    1. **This manuscript is featured by a guest commentary by T.-F. Mah entitled “Regulating antibiotic tolerance within biofilm microcolonies”, Commentary on JB00765-12R1 “The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance”. The guest commentary appeared in the same journal volume as our manuscript.

    2. ** This manuscript was featured as a “Journal Highlight” in the September issue of the ASM member magazine Microbe.

  10. Basu Roy, A., O. E. Petrova, and K. Sauer. 2012. The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J. Bacteriol. 194:2904-2915.

  11. **Petrova, O. E., and K. Sauer. 2011. SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation J. Bacteriol. 193:6614-6628.

    1. **This publication received a faculty 1000 citation as a "Must Read"

  12. Petrova, O. E., J. R. Schurr, M. J. Schurr, and K. Sauer. 2011. The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA. Molecular Microbiology 81:767-783.

  13. **Petrova, O.E., and K. Sauer. 2010. The novel two-component regulatory system BfiSR regulates biofilm development directly through CafA by its control over the small RNA rsmZ. J Bacteriol. 192: 5275-5288.

    1. **This manuscript is featured by a guest commentary which appeared in the same journal volume as our manuscript. The guest commentary was written by Dr. A. Goodman (Andrew L. Goodman. 2010. Sit and Stay a While: How BfiSR Controls Irreversible Attachment in Pseudomonas aeruginosa Biofilms. J. Bacteriol 192: 5273-5274. )

    2. ** This manuscript was featured as a “Journal Highlight” in the ASM member magazine Microbe.

  14. Sanchez, C.J., P. Shivshankar, K. Stol, S. Trakhtenbroit, P.M. Sullam, K. Sauer, P.W. Hermans, C.J. Orihuela. 2010. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathogens 6:e1001044.

  15. Lizcano, A., T. Chin, K. Sauer, E.I. Tuomanen, and C.J. Orihuela. 2010. Early biofilm formation on microtiter plates is not correlated with the invasive disease potential of Streptococcus pneumoniae. Microbial Pathogenesis 48: 124-130.

  16. Petrova, O.E., and K. Sauer. 2009. A Novel Signaling Network Essential for Regulating Pseudomonas aeruginosa Biofilm Development. PLoS Pathogens 5: e1000668.

  17. Sauer, K., J. Steczko, and S.R. Ash. 2009. Effect of a solution containing citrate/Methylene Blue/parabens on Staphylococcus aureus bacteria and biofilm, and comparison with various heparin solutions. J. Antimicrob. Chemother. 63:937-945.

  18. Sauer, K., E. Thatcher, R., Northey, and A.A., Guitierrez. 2008. Neutral super-oxidised solutions are effective in killing P. aeruginosa biofilms. Biofouling 8: 1-10.

  19. Allegrucci, M., and K. Sauer. 2008. Formation of Streptococcus pneumoniae non-phase-variable colony variants is due to increased mutation frequency present under biofilm growth conditions. J. Bacteriol. 190:6330-6339.

  20. Sauer, K., J. Steczko, and S. R. Ash. 2009. Effect of a solution containing citrate/Methylene Blue/parabens on Staphylococcus aureus bacteria and biofilm, and comparison with various heparin solutions. Journal of Antimicrobial Chemotherapy 63:937-945.

  21. Platt, M.D., M.J. Schurr, K. Sauer, G. Vazquez, I. Kukavia-Ibrulj, E. Potvin, R.C. Levesque, A. Fedynak, F.S.L. Brinkman, J. Schurr, S.-H. Hwang, G.W. Lau, P.A. Limbach, J.J. Rowe, M.A. Lieberman, N. Barraud, J. Webb, S. Kjelleberg, D.F. Hunt, and D.J. Hassett. 2008. Proteomic, Microarray and Signature Tagged Mutagenesis Analysis of Anaerobic Pseudomonas aeruginosa at pH 6.5, Representing Chronic Cystic Fibrosis Airway Conditions. J. Bacteriol. 190:2739-2758.

  22. Morici, L.A., A.J. Carterson, V.E. Wagner, A.Frisk, J.R. Schurr, K. Höner zu Bentrup, D.J. Hassett, B.H. Iglewski, K. Sauer, and M.J. Schurr. 2007. Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J. Bacteriol. 189: 7752-7764.

  23. Allegrucci, M., and K. Sauer. 2007. Characterization of colony morphology variants isolated from Streptococcus pneumoniae biofilms. J. Bacteriol. 189:2030-2038.

  24. *Morgan, R., S. Kohn, H. Sun-Hei, D.J. Hassett, and K. Sauer. 2006. BdlA, a chemotaxis regulator essential for dispersion. J. Bacteriol. 188:7335-7743.

    1. authors include undergraduate students

  25. Allegrucci, M., F.Z. Hu, K. Shen, J. Hayes, G.D. Ehrlich, J.C. Post, and K. Sauer. 2006. Phenotypic characterization of Streptococcus pneumoniae biofilm development. J. Bacteriol. 188:2325-2335.

  26. Southey-Pillig, C.J, D.G. Davies, and K. Sauer. 2005. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J. Bacteriol. 187: 8114-8126.

  27. Patrauchan, M.A., S. Sarkisova, K. Sauer, and M.J. Franklin. 2005. Calcium influences cellular and extracellular product formation during biofilm-associated growth of a marine Pseudoalteromonas sp. Microbiology 151: 2885-2897.

  28. *Sauer, K, M.C. Cullen, A.H. Rickard., L.A. Zeef, D.G. Davies, and P. Gilbert. 2004. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol.186: 7312-7326.

    1. authors include undergraduate students.

  29. Sauer, K. 2003. The genomics and proteomics of biofilm formation. Genome Biology 4:219.0-219.5.

  30. Stoodley, P., K. Sauer, D.G. Davies, and J. W. Costerton. 2002. Biofilms as Complex Differentiated Communities. Annu. Rev. Microbiol. 56:187-210.

  31. **Sauer, K., A.K. Camper, G.D. Ehrlich, J.W. Costerton, and D.G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184:1140-1154.

    1. **This publication received a faculty 1000 citation, “Recommended".

  32. Sauer, K., and A.K. Camper. 2001. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J. Bacteriol. 183:6579-6598.

 

Prior 2001

  1. Sauer, K., and R.K. Thauer. 2000. Methyl-coenzyme M formation in methanogenic archaea. Involvement of zinc in coenzyme M activation. Eur. J. Biochem. 267:2498-2504.

  2. Sauer, K., and R.K. Thauer. 1999. The role of corrinoids in methanogenesis. In: Chemistry and Biochemistry of B12 (Banerjee, R., Ed.), pp. 655-679, John Wiley & Sons, Inc., New York. 

  3. Sauer, K., and R.K. Thauer. 1999. Methanol:coenzyme M methyltransferase from Methanosarcina barkeri - substitution of the corrinoid harbouring subunit MtaC by free cob(I)alamin. Eur. J. Biochem. 261:674-681.

  4. Sauer, K., and R.K. Thauer. 1998. Methanol:coenzyme M methyltransferase from Methanosarcina barkeri. Identification of the active-site histidine in the corrinoid-harboring subunit MtaC by site-directed mutagenesis. Eur. J. Biochem. 253:698-705.

  5. Sauer, K., and R.K. Thauer. 1998. His84 rather than His35 is the active site histidine in the corrinoid protein MtrA of the energy conserving methyltransferase complex from Methanobacterium thermoautotrophicum. FEBS Lett. 436:401-402.

  6. Asakawa, S., K. Sauer, W. Liesack, and R.K. Thauer. 1998. Tetramethylammonium:coenzyme M methyltransferase system from Methanococcoides sp. Arch. Microbiol. 170:220-226.

  7. Sauer, K., and R.K. Thauer. 1997. Methanol:coenzyme M methyltransferase from Methanosarcina barkeri. Zinc dependence and thermodynamics of the methanol:cob(I)alamin methyltransferase reaction. Eur. J. Biochem. 249:280-285.

  8. Sauer, K., U. Harms, and R.K. Thauer. 1997. Methanol:coenzyme M methyltransferase from Methanosarcina barkeri. Purification, properties and encoding genes of the corrinoid protein MT1. Eur. J. Biochem. 243:670-677.

bottom of page